
HOW MUCH MEMORY RADIATION PROTECTION DO ONBOARD MACHINE
LEARNING ALGORITHMS REQUIRE?

Kiri L. Wagstaff and Benjamin Bornstein

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA

ABSTRACT

Onboard autonomy is necessary for achieving the goals
of future space missions, given the communication de-
lays imposed by the extreme distances involved (e.g., to
Saturn). The high-radiation space environment can have
severe negative effects on unprotected onboard computa-
tion, for example by flipping bits in memory. Radiation-
hardened components that protect against the majority of
these errors exist, but whether such extreme protection
is needed is an open question. We developed a method
for simulating radiation-induced bit flips and quantita-
tively assessed the sensitivity of clustering and classifica-
tion algorithms likely to be used onboard spacecraft. We
found that, for small data sets in a low-Earth orbit radi-
ation environment, commercial RAM would suffice; no
radiation-hardening of the memory is needed. We also
found that simpler algorithms (regular k-means cluster-
ing, linear support vector machines) have less sensitivity
(more tolerance) than more sophisticated versions (kd-k-
means, Gaussian support vector machines). The develop-
ment of algorithms with even less sensitivity to radiation
is an open area of research.

Key words: radiation, onboard data analysis.

1. INTRODUCTION

Space missions are adopting increasingly ambitious
goals, in which they operate at distances and in environ-
ments that require onboard autonomy for local decision
making. Autonomy that closes the decision loop without
resorting to communications with the Earth can dramati-
cally reduce idle time and increase mission capability and
science return. Proposed future missions to the Jupiter
and Saturn systems, such as the Jupiter Europa Orbiter or
a Titan aerobot, stand to benefit significantly, since each
one-way communication consumes hours instead of min-
utes (as with Mars). Onboard machine learning and data
analysis methods are what can make this level of auton-
omy possible. They enable spacecraft to make decisions
about how to prioritize data, the level of compression to
use when transmitting data, and which targets to observe
next (Castano et al., 2005, 2007). The primary methods

used are unsupervised clustering and supervised classifi-
cation. Clustering identifies groups and trends in the ob-
servations and can also be used for anomaly detection.
Classification can serve science goals (e.g., to identify
land cover types in a hyperspectral image) or engineering
goals (e.g., to distinguish normal from abnormal opera-
tions).

The onboard computing environment differs from a desk-
top environment in many ways, including the amount of
computational power, available memory, storage space,
and high doses of radiation. Radiation causes errors in
the processor (corrupting registers and caches) and in
memory (flipping individual bits). The former problem
is generally addressed by using fully radiation-hardened
processors. We focus on the effects of radiation on on-
board memory and the subsequent impact on the results
of onboard data analysis. Spacecraft currently employ
both hardware and software countermeasures to address
the radiation problem for memory. The hardware solu-
tion involves the use of radiation-hardened components,
which bring with them a steep increase in cost, some-
times an increase in mass, and almost always a reduction
in capability and speed, compared to less-hardened com-
ponents. Existing software solutions include EDAC (Er-
ror Detection and Correction), which employs a “mem-
ory scrubber” process to continually check memory for
errors (Shirvani et al., 2000). It can detect and correct
single-bit errors, and detect (but not correct) double-bit
errors. However, in addition to the processing overhead
imposed by the memory scrubber, EDAC also imposes a
memory overhead of about 30% due to the additional bits
needed to permit the detection of a flipped bit.

Intuitively, we would like to prevent onboard computa-
tion from suffering any radiation-induced errors. How-
ever, it is quite possible for an algorithm to produce the
correct results even in the presence of the occasional
flipped bit, especially if the affected bits are not needed
for the final calculation or are flipped after they are read
for the last time. If so, then the protection afforded by
radiation-hardened memory and EDAC systems would
be unnecessary, and spacecraft could employ higher-
capability, cheaper, lighter, and less-hardened memory
for onboard computation.

We therefore propose a quantitative measurement of the
innate degree of radiation tolerance of a variety of on-



Kiri L. Wagstaff and Benjamin Bornstein 

Jet Propulsion Laboratory, California Institute of Technology 

©2009 California Institute of Technology.  Government sponsorship acknowledged. 

Computation 

RAM 

!"#$"%$&'(

)"%"(

)"%"((

*+",(-.(/&0012%3(

!.415%((

*$4($%(/&0012%63(

Figure 1. The BITFLIPS software radiation simulator in-
jects errors (single-event upsets or SEUs) into RAM while
the program is running. When the algorithm requests
data from RAM, it may be corrupted.

board data analysis algorithms. To do this, we assess
an algorithm’s performance in the presence of simulated
radiation-induced memory errors. These “single-event
upsets” (SEUs) are simulated for the input data that is be-
ing analyzed as well as any intermediate data structures
the algorithm creates while operating. We developed a
software radiation simulator called BITFLIPS (Basic In-
strumentation Tool for Fault Localized Injection of Prob-
abilistic SEUs). BITFLIPS monitors all data structures in
use and injects simulated SEUs at a user-specified rate (in
SEUs per kB per instruction).

The major contributions of this paper are 1) the BIT-
FLIPS software radiation simulator and 2) radiation sen-
sitivity results for both classification and clustering al-
gorithms that are, or may in the future be, used on-
board spacecraft. The same radiation sensitivity evalu-
ation methodology can be used with other algorithms, in-
put data, and specified radiation environments so that it is
possible to determine in each case whether less-hardened
memory can be safely employed. More generally, this
kind of analysis allows mission designers to select indi-
vidual algorithms according to the target radiation envi-
ronment. For the first time, the merits of different algo-
rithms, with respect to their radiation tolerance, can be
directly compared.

2. RADIATION SIMULATION: BITFLIPS

While radiation can cause errors both in spacecraft mem-
ory and in the processor, we focus on modeling radiation
impacts in memory only. The CPU is such a critical com-
ponent to the entire spacecraft, not just the data analy-
sis system, that it is likely to be fully radiation-hardened
for the foreseeable future. However, spacecraft memory
could potentially tolerate less hardening, if the software
itself is shown to be tolerant to the target radiation envi-
ronment. The use of less-hardened memory components
could greatly decrease the cost and increase the capabil-
ity of a mission. Further, even radiation-hardened mem-
ory experiences the occasional error, so characterizing a

given algorithm’s sensitivity to radiation is relevant re-
gardless. Radiation can cause a variety of errors in mem-
ory, include flipped bits, stuck bits, and damaged compo-
nents. The most common error is the single-event upset
(SEU).

2.1. Simulating SEUs in BITFLIPS

We designed and implemented a lightweight SEU soft-
ware simulator, BITFLIPS (Basic Instrumentation Tool
for Fault Localized Injection of Probabilistic SEUs), that
is built on the Valgrind debugger/profiler (Nethercote and
Seward, 2007). BITFLIPS injects errors in a reproducible
fashion at a user-specified SEU rate (see Figure 1). For
programs written in C, macros are provided that enable
the selective exposure (and protection) of individual pro-
gram variables.

The open source Valgrind debugging and profiling tool
provides an ideal foundation for BITFLIPS. Valgrind
simulates a CPU in software and provides a modular ar-
chitecture for creating tools that hook into its simula-
tion environment. Valgrind’s stock tool suite contains
a memory leak detector, CPU cache profiler, program
caller-callee inspector, system heap profiler, and a thread
synchronization debugger. BITFLIPS is patterned after
Valgrind’s memory leak detector, but instead of monitor-
ing memory usage, BITFLIPS injects SEUs into memory
during program execution.

BITFLIPS relies on Valgrind’s on-the-fly program instru-
mentation capability to inject SEUs. To simplify instru-
mentation, Valgrind translates a program’s processor spe-
cific instructions into VEX IR, a Reduced Instruction Set
Computing (RISC)-like Intermediate Representation (IR)
language. RISC-like instructions eliminate the need for
plugin tools like BITFLIPS to contain specialized pro-
gram logic tailored to complicated, possibly processor-
specific instructions. Instead tools analyze and operate on
basic load, store, arithmetic, comparison, and branch op-
erations. The Valgrind simulator, and by extension, BIT-
FLIPS, operates in an instrument-execute loop.

The instrumentation process begins when Valgrind trans-
lates the first (or next) block of a program’s processor
specific instructions into VEX IR. Next, Valgrind passes
its VEX IR block to BITFLIPS for analysis and in-
strumentation. BITFLIPS then interleaves a special C-
callback VEX IR instruction between each of the pro-
gram’s VEX IR instructions in the block. The call-
back instruction, when executed, results in a call to a
BITFLIPS C function, BF doFaultCheck(), which
is responsible for deciding when and where to inject
SEUs. The BF doFaultCheck() function delegates
to BF doFlipBits() when appropriate to perform the
actual SEU operation. When BITFLIPS finishes its in-
strumentation, the VEX IR block is passed back to Val-
grind. Finally, Valgrind executes the instrumented in-
struction block. This process repeats until there are no
more program instructions left to execute.



The rate at which BITFLIPS injects SEUs is governed by
a radiation flux parameter which is fixed at the time of
initial program execution. The units of this parameter are
SEUs per kilobyte per instruction. We use kilobytes as a
proxy for physical memory area; the larger the area, the
more memory is exposed to radiation. The SEU density
(number of bits flipped per SEU) is determined by a dis-
crete Poisson distribution. Sixty percent of BITFLIPS’
SEUs affect a single bit. Thirty percent of BITFLIPS’
SEUs affect two bits, and so on. An upset affecting seven
bits is exceedingly rare and accounts for only one percent
of SEUs injected.

2.2. Exposing Individual Data Structures

For both precise experimental control and improved re-
porting, BITFLIPS allows the specification of which pro-
gram variables to expose to radiation. There are two
requirements for this capability: 1) the program must
be written in C and 2) the program source code must
be accessible for compilation. Exposing (or shielding)
individual variables is achieved through a Valgrind fea-
ture known as Client Request Macros (CRMs). Valgrind
CRMs are C preprocessor macros whose substituted code
results in a series of register bit shifts. When a program
is run under Valgrind, these register operations are de-
tected by the Valgrind simulator and mapped to C call-
backs in BITFLIPS. When a program is run in its na-
tive environment (i.e., outside of the Valgrind simulator),
the register operations are effectively no-ops, and they
do not affect the operation of the program. Moreover,
the run-time overhead imposed by CRMs on native pro-
grams is negligible: six simple integer instructions. BIT-
FLIPS CRMs also communicate to BITFLIPS the C type
(e.g., char, int, float, double, etc.) and layout (for
row- or column-major matrices) of the exposed program
variables. BITFLIPS uses this information, in its verbose
output mode, to report variable values before and after an
SEU, as well as the difference between them, so that the
magnitude of the SEU’s impact can be quantified.

The BITFLIPS CRMs are as follows:

• VALGRIND BITFLIPS ON() Enables SEU injec-
tion.

• VALGRIND BITFLIPS OFF() Disables SEU in-
jection.

• VALGRIND BITFLIPS MEM ON(addr,
nrows, ncols, type, order) Exposes
a block of memory beginning at address addr to
SEUs. The memory block has nrows rows and
ncols columns. The C type of the block (e.g. char,
int, float, double, etc.) and matrix order
(row- or column-major) give BITFLIPS additional
information to use when reporting variable values
before and after an SEU.

• VALGRIND BITFLIPS MEM OFF(addr)
Shields the previously exposed block of memory
beginning at address addr from future SEUs.

3. CLUSTERING ALGORITHMS

Our first experiments were with clustering algorithms.
An initial version of these results was previously reported
by Wagstaff and Bornstein (2009). However, an incorrect
conversion from the native SEU rate used by BITFLIPS
(in SEUs per kB per instruction) to SEUs per kB per
second caused an incorrect conclusion regarding effec-
tive radiation rates in low-Earth orbit (LEO). We reported
that, for small data sets, the effective rates experienced by
commercial RAM in LEO would not cause trouble for the
analysis of small data sets, but would be problematic for
larger data sets. This would be true if the processor were
only capable of executing a single instruction per second.
Instead, for modern processors (even radiation-hardened
processors), which can execute millions of instructions
per second, in fact it would be safe to cluster orders of
magnitude more data, using commercial RAM, without
seeing any adverse effects in the LEO environment. Re-
vised figures that use the correct version of radiation rates
used by BITFLIPS, and our revised conclusions, are pre-
sented in this section.

3.1. Clustering Methodology

We compared the basic k-means clustering algo-
rithm (MacQueen, 1967) to two variants designed to
speed up analysis. A shorter runtime would mean less
exposure to SEUs and therefore potentially higher ra-
diation tolerance. Subsampling k-means (Bradley and
Fayyad, 1998) performs an initial pass with a subset of
the data to obtain a good starting point for clustering
the whole data set, yielding faster convergence. Kd-k-
means (Alsabti et al., 1998; Kanungo et al., 1999; Pelleg
and Moore, 1999) builds a kd-tree over the data’s feature
space and uses this to “filter” cluster centers to the correct
data points. It achieves faster runtime at the expense of
consuming more memory, to store the kd-tree.

We experimented with two data sets. The Iris data set
from the UCI repository (Asuncion and Newman, 2007)
contains 150 items, each described by four features.
There are three types of iris in this data set, so we set
the number of desired clusters k = 3. The second data
set consists of 1600 pixels (40x40) collected by the Hy-
perion instrument onboard the EO-1 Earth orbiter on Oc-
tober 3, 2002. Each pixel is described by 11 features (re-
flectance at 11 different wavelengths, from 426 to 2284
nm). The data set covers part of the Quinghai Province in
China and includes clouds, cultivated land, and lakes as
shown in Figure 2(a). For evaluation purposes, we man-
ually labeled each pixel as “cloud” or “not cloud”; see
Figure 2(b). We set k = 2 when clustering and obtained



(a) RGB (b) Labels (c) K-means

Figure 2. Satellite image of Quinghai Province, China,
observed on October 3, 2002. (a) The 11-band data
shown in RGB. Clouds are on the left and right sides, with
land and a lake between them. (b) Manually assigned la-
bels: bright = cloudy and dark = clear. (c) Regular k-
means clustering output (using all 11 spectral bands, no
radiation) achieves 0.940 agreement with the labels.

the result in Figure 2(c) from the k-means algorithm when
clustering in a radiation-free environment.

We applied each of the three algorithms to each data
set with a variety of different radiation rates specified.
We evaluated performance using the Adjusted Rand In-
dex or ARI (Hubert and Arabie, 1985), which reports the
amount of agreement between the clustering output and
the true partition defined by the data labels. The maxi-
mum possible ARI score is 1.0.

3.2. Clustering Results

Our first finding was that using subsampling with k-
means measurably improves its radiation tolerance, as
shown in Figure 3. At a radiation rate of 1 × 10−5

SEUs/kB/inst, performance for k-means drops from an
average of 0.7 down to 0.32, while subsampling k-means
remains at 0.64. At higher radiation rates, the perfor-
mance of all algorithms drops to 0. In contrast, the use of
a kd-tree worsens radiation tolerance. Performance be-
gins to decline at a much lower rate of 8× 10−7. This is
largely due to the increased memory profile (storing the
kd-tree itself) and the algorithm’s sensitivity to any per-
turbations to this tree.

For comparison, the Mongoose-V processor on the EO-
1 spacecraft (in low Earth orbit) can execute about 20
MIPS and, using regular commercial RAM, would ex-
perience about 4.6 × 10−14 SEUs/kB/inst. All of the ra-
diation rates shown in Figure 3 are therefore much higher
than anything such a spacecraft would experience in low
Earth orbit, and we could safely use commercial RAM
when analyzing this data set, or even data sets that are
orders of magnitude larger. In a higher radiation envi-
ronment, such as Jupiter orbit, this may no longer be the
case. Given estimates of the SEUs/kB/sec experienced in
that environment, we can conduct the same analysis and
determine how much radiation hardening is needed for
the spacecraft memory.

The BITFLIPS simulator allows us to selectively expose

10−7 10−6 10−5 10−40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radiation rate (SEUs per kB per instruction)

Ac
cu

ra
cy

 (A
dj

us
te

d 
R

an
d 

In
de

x)

 

 

Sample=0.4
K−means
Kd−k−means

Figure 3. Radiation tolerance of three k-means cluster-
ing algorithms, with all RAM exposed, measured as clus-
tering accuracy as a function of radiation rate. Results
were obtained by clustering the Iris benchmark data set
and averaging over 100 trials.

different parts of memory to radiation, so that we can pre-
cisely probe and identify which data structures are most
vulnerable to radiation, and therefore may require the
most protection. Figure 4 shows the performance results
obtained when clustering the Quinghai Province satellite
data using each of the three clustering algorithms, and
exposing either the input data, the assignments of items
(pixels) to clusters, or the cluster centers themselves (the
cluster models). In addition, for kd-k-means, we tested
exposing only the kd-tree.

We found that radiation sensitivity was dictated by how
the memory was used by the algorithm, rather than the
raw amount of memory that was exposed. We consis-
tently found for all algorithms that the cluster assign-
ments were the least sensitive component of memory
usage, even though they consumed more memory than
the cluster assignments (for example) did (6400 versus
88 bytes). In addition, we found that the kd-tree itself
was the most sensitive data structure used by the kd-k-
means algorithm, helping to explain its increased sensi-
tivity when all data structures were exposed, as in Fig-
ure 3. However, once again the SEU rates at which degra-
dation was observed were 8 orders of magnitude larger
than what would be experienced by the EO-1 spacecraft
that collected this data, even if it used only commercial
RAM.

4. CLASSIFICATION ALGORITHMS

Classification algorithms are also of interest for onboard
use, particularly Support Vector Machines (Cortes and
Vapnik, 1995), which are currently used onboard the EO-
1 orbiter (Castano et al., 2005). These algorithms are first
used to train a classifier model on the ground, using la-
beled data, and then the learned model is uploaded to the



10−8 10−7 10−6 10−5 10−4 10−30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radiation rate (SEUs per kB per instruction)

Ac
cu

ra
cy

 (A
dj

us
te

d 
R

an
d 

In
de

x)

 

 

Assignments
Centers
Data

(a) Regular k-means

10−8 10−7 10−6 10−5 10−4 10−30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radiation rate (SEUs per kB per instruction)

Ac
cu

ra
cy

 (A
dj

us
te

d 
R

an
d 

In
de

x)

 

 

Assignments
Centers
Data

(b) K-means with 10% subsample

10−8 10−7 10−6 10−5 10−4 10−30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radiation rate (SEUs per kB per instruction)

Ac
cu

ra
cy

 (A
dj

us
te

d 
R

an
d 

In
de

x)

 

 

Assignments
Centers
Data
Kd−tree

(c) Kd-k-means (leaf size = 100)

Figure 4. Radiation tolerance of individual data structures used by k-means algorithms (Quinghai Province data set).
Each curve is the average over 10 trials, with bars showing one standard deviation.

spacecraft and used to classify new observations as they
are collected. On EO-1, the classification result can be
used to autonomously trigger additional observations of
key phenomena such as lake ice thaw or the appearance
of arctic sulfur deposits.

4.1. Classification Methodology

Support vector machines (SVMs) rely on a kernel func-
tion to specify how the similarity between two items
should be measured. The simplest kernel function is the
dot product between two items, which is referred to as a
linear kernel. It is effective for learning to classify items
when the classes are linearly separable. If not, more so-
phisticated kernels using polynomial and Gaussian (RBF)
functions are employed. These kernels, while capable of
capturing more complicated class boundaries, are more
expensive to compute. Their longer runtimes may there-
fore make them more susceptible to radiation.

The data set we used for the classification experi-
ments was a synthetic data set composed of 1000 six-
dimensional items artificially generated from two Gaus-
sian distributions N1 and N2. The means of these two
distributions were randomly generated fromN (0, 1), and
each had a standard deviation of 1. The resulting two
classes were not linearly separable.

We experimented with different kernels to determine their
relative sensitivity on this data set. We evaluated per-
formance using the classification accuracy of the learned
model on a separate test set of 200 items (100 from each
class). The SVMs were always trained in the absence
of radiation, akin to how they would be trained “on the
ground” for a real deployment. We simulated SEUs dur-
ing the testing phase, which corresponds to the onboard
use of the trained model. We also experimented with
selectively exposing the input data, the learned model,
or both. Each trial varied the random seed provided to
BITFLIPS, creating a different pattern of SEUs in RAM,
while keeping the trained model and input data fixed.

10−9 10−8 10−7 10−6 10−50

10

20

30

40

50

60

70

80

90

100

Radiation rate (SEUs per kB per instruction)

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

 

 

 linear
 poly 2 1
 poly 3 1
 rbf 1

Figure 5. Radiation tolerance as a function of radiation
rate for support vector machines using different kernels,
with all RAM exposed, averaged over 10 trials. All SVMs
were trained on 1000 items from two Gaussian distribu-
tions and tested on 200 additional items.

4.2. Classification Results

Figure 5 shows that, at very low radiation rates, the Gaus-
sian (RBF) SVM had the best performance, classifying
68% of the test items correctly. The linear SVM had
an accuracy of only 59%, and the second- and third-
degree polynomial kernels yielded even worse perfor-
mance. However, the Gaussian SVM’s performance fell
off quickly as the radiation rate increased, probably be-
cause of its longer runtime (an order of magnitude longer
than a simple linear kernel). In fact, the simple linear
SVM showed the best radiation tolerance, retaining the
best performance at higher radiation rates (albeit with
large error bars).

The radiation tolerance results when exposing individual
data structures used by the SVMs are shown in Figure 6.
A trained SVM model consists of a collection of sup-
port vectors (SVs) and the weight associated with each
support vector. These are collectively used to classify



10−8 10−6 10−40

10

20

30

40

50

60

70

80

90

100

Radiation rate (SEUs per kB per instruction)

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

 

 

SV
all
data
weight

(a) Linear kernel

10−8 10−6 10−40

10

20

30

40

50

60

70

80

90

100

Radiation rate (SEUs per kB per instruction)

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

 

 

SV
all
data
weight

(b) Second-degree polynomial kernel

10−8 10−6 10−40

10

20

30

40

50

60

70

80

90

100

Radiation rate (SEUs per kB per instruction)

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

 

 

SV
all
data
weight

(c) Gaussian (RBF) kernel

Figure 6. Radiation tolerance of individual data structures used by support vector machines, as a function of radiation
rate. All SVMs were trained on 1000 items from two Gaussian distributions and tested on 200 items, and results were
averaged over 10 trials.

new items. We tested selectively exposing the SVs, the
weights, the input data, or all of the above (the “all” re-
sults are identical to those shown in Figure 5).

Interestingly, the relative sensitivity of different data
structures for SVMs was the opposite of what we ob-
served with clustering algorithms. For clustering, the in-
put data (and the kd-tree, if used) was the most radiation-
sensitive area of memory. For SVMs, the data was the
least sensitive component. The difference arises from
how the algorithms work. K-means (and its variants) use
an iterative strategy, assigning items to clusters, updat-
ing the cluster models, and then repeating the process un-
til the solution converges. Errors in the data persist and
affect every subsequent iteration. In contrast, an SVM
examines each data item only once, generates its classifi-
cation result, and moves on to the next item. SEUs that
occur in items that have already been classified, there-
fore, have no effect on the final outcome. Likewise, the
model created by k-means clustering (the cluster means)
is less sensitive to radiation because it is refreshed at ev-
ery iteration; each cluster mean is recomputed from the
items assigned to it. But the model used by an SVM is
not re-trained or updated during classification, so again
any errors are cumulative.

This inversion emphasizes the fact that, if selective deci-
sions must be made about which memory to protect and
which may use less hardened components, it is critical
to consider what algorithms will be run and their specific
vulnerable points in terms of the individual data struc-
tures that they use.

Curiously, we observed that the relative sensitivity of
the components of the SVM model (the support vectors
and the weights) was not constant across different ker-
nel types. For a linear kernel (Figure 6(a)), the SVs
were more sensitive than were the weights, but this differ-
ence was reduced for the second-degree polynomial ker-
nel (Figure 6(b)), and inverted for the Gaussian kernel
(Figure 6(c)), for which the weights were more sensitive
than the SVs. There is no immediately obvious explana-
tion for this phenomenon, and it could be an effect of run-

ning only 10 trials, with a single model for each kernel,
in which case the distinction would vanish if the results
were averaged over a broader variety of runs.

5. RADIATION PROTECTION FOR ONBOARD
MACHINE LEARNING ALGORITHMS

For the data sets we the have used to date, we found that,
for operation in low Earth orbit, even commercial RAM
provides more than enough protection for both classifica-
tion and clustering algorithms to produce correct results
despite ongoing SEUs. However, in higher-radiation en-
vironments, such as Jupiter or Saturn orbit, or when an-
alyzing larger data sets that necessarily require long run-
times, we may reach the point where commercial RAM
does not suffice. In such a case, radiation-hardened mem-
ory could be used. However, due to the negative fac-
tors previously mentioned, it is worth considering what
software options may be available that would provide the
same level of reliability.

There are three main software approaches to providing
radiation protection. As mentioned before, Error Detec-
tion and Correction (EDAC) uses special memory encod-
ing schemes paired with a periodic “memory scrubbing”
process to detect and correct SEUs as they happen (Shir-
vani et al., 2000). Second, one can pre-emptively execute
the same computation (such as classifying items) multi-
ple times and combine the results with a voting scheme.
EDAC imposes an overhead in terms of memory storage
(about 30%) and processor consumption (for the scrub-
ber process). Pre-emptive execution may waste cycles
recomputing unnecessarily. Algorithm-Based Fault Tol-
erance (ABFT) addresses these limitations by creating
algorithm-specific checks that allow the detection of er-
rors in the output (Huang and Abraham, 1984; Turmon
et al., 2003; Granat et al., 2009). There is a small addi-
tional effort involved in conducting these checks, but it
allows the system to only recompute solutions that con-
tain errors, and does not require any special memory en-
codings or a monitoring process to run in the background.



6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a software radiation sim-
ulator (BITFLIPS) which allows the precise testing of an
algorithm’s radiation sensitivity, or tolerance. BITFLIPS
allows the specification of a radiation rate, in terms of
SEUs per kilobyte of RAM per instruction executed by
the CPU. It also permits the selective exposure of indi-
vidual data structures in memory, so that the most vul-
nerable portions of an algorithm’s memory usage can be
identified.

We evaluated the sensitivity of both clustering and classi-
fication algorithms. These are algorithms that are cur-
rently, or are likely to be, used onboard spacecraft in
high-radiation environments. We found that in both
cases, for small data sets, performance did not degrade
until the radiation rate was increased by 8 or 9 orders
of magnitude above that experienced in low-Earth or-
bit, even if (soft) commercial RAM was used. This re-
sult points to the possibility of certifying before flight
whether, for a given mission, commercial RAM provides
sufficient reliability—a condition that we can evaluate
empirically with BITFLIPS.

In future work, we aim to conduct the same evaluation
using larger data sets, and to run tests with the higher ra-
diation rates that would be experienced in Jupiter or Sat-
urn orbit. BITFLIPS could also be applied to all flight
software planned to be operated in a high-radiation envi-
ronment, to assess risk quantitatively.

ACKNOWLEDGMENTS

Our experiments used the JPL Supercomputing Facility,
which is funded by the JPL Office of the Chief Informa-
tion Officer. We gratefully acknowledge the support of
a JPL Lew Allen Excellence in Research award, which
supported this research. This work was carried out at the
Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics
and Space Administration. c© 2009, California Institute
of Technology.

REFERENCES

Alsabti, K., Ranka, S., and Singh, V. (1998). An efficient
k-means clustering algorithm. In Proceedings of the
1st Workshop on High Performance Data Mining.

Asuncion, A. and Newman, D. (2007). UCI machine
learning repository. http://www.ics.uci.edu/
∼mlearn/MLRepository.html.

Bradley, P. S. and Fayyad, U. M. (1998). Refining initial
points for k-means clustering. In Proceedings of the
Fifteenth International Conference on Machine Learn-
ing, pages 91–99.

Castano, R., Mazzoni, D., Tang, N., Doggett, T., Chien,
S., Greeley, R., Cichy, B., and Davies, A. (2005).
Learning classifiers for science event detection in re-
mote sensing imagery. In Proceedings of the Eighth
International Symposium on Artificial Intelligence,
Robotics, and Automation in Space.

Castano, R., Wagstaff, K. L., Chien, S., Stough, T. M.,
and Tang, B. (2007). On-board analysis of uncali-
brated data for a spacecraft at Mars. In Proceedings
of the Thirteenth International Conference on Knowl-
edge Discovery and Data Mining, pages 922–930.

Cortes, C. and Vapnik, V. (1995). Support-vector net-
work. Machine Learning, 20:273–297.

Granat, R., Wagstaff, K. L., Bornstein, B., Tang, B.,
and Turmon, M. (2009). Simulating and detecting
radiation-induced errors for onboard machine learning.
In Proceedings of the Third IEEE International Con-
ference on Space Mission Challenges for Information
Technology (SMC-IT), pages 125–131.

Huang, K.-H. and Abraham, J. A. (1984). Algorithm-
based fault tolerance. IEEE Transactions on Comput-
ers, 33(6):518–528.

Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of Classification, 2:193–218.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C., Silverman, R., and Wu, A. Y. (1999). Computing
nearest neighbors for moving points and applications
to clustering. In Proceedings of the Tenth ACM-SIAM
Symposium on Discrete Algorithms, pages S931–S932.

MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the Fifth Symposium on Math, Statistics, and
Probability, volume 1, pages 281–297.

Nethercote, N. and Seward, J. (2007). Valgrind: A frame-
work for heavyweight dynamic binary instrumenta-
tion. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 89–100.

Pelleg, D. and Moore, A. (1999). Accelerating ex-
act k-means algorithms with geometric reasoning. In
Proceedings of the Fifth International Conference on
Knowledge Discovery in Databases, pages 277–281.

Shirvani, P. P., Saxena, N. R., and McCluskey, E. J.
(2000). Software-implemented EDAC protection
against SEUs. IEEE Transactions on Reliability,
49(3):273–284.

Turmon, M., Granat, R., Katz, D., and Lou, J. (2003).
Tests and tolerances for high-performance software-
implemented fault detection. IEEE Transactions on
Computers, 52(5):579–591.

Wagstaff, K. L. and Bornstein, B. (2009). K-means in
space: A radiation sensitivity evaluation. In Proceed-
ings of the Twenty-Sixth International Conference on
Machine Learning, pages 1097–1104.


